

WFF ULDB Mission Design Review

WALLOPS FLIGHT FACILITY

ULDB Balloon Vehicle and Recovery Systems

ULDB Balloon Vehicle & Recovery Systems Products

ULDB Vehicle and Recovery Systems

Vehicle Structure

- Main Envelope
- Special Structural Elements
- Flight Trajectory Control Systems
 - Altitude Control Element
 - Ground Track Control Element
- Recovery Systems
 - Descent Element
 - Impact/Containment Elements
- Flight Train
 - Load Support/ Separation Element
 - Torque Transfer Element

2.1 Vehicle Structure

Functional Requirements [drivers]

- Loft and maintain 'ballooncraft', recovery system and other support elements for up to 100 days Non Polar [Science, Mission, HQ]
- Achieve minimum float altitudes of 110,000' (33.5 km) to 115,000' (35 km) [HQ, Science]

Target Design-to Requirements

- Suspended Science Weight to 2200 lb. (1000 kg)
- Total Suspended Weight to 3500 lb. (1600 kg)
- Minimum Float Altitude >= 115,000°

Vehicle Science Weight Requirements

Vehicle Minimum Altitude Requirements

WALLOPS FLIGHT FACILITY

Minimum Altitude Requirement (k feet) [ITMI 4/97]

ULDB Vehicle Structure

- Leading Design Concepts
 - Large Super Pressure Balloon
 - Anchor Balloon System
 - Gas Temperature Control
- Technology Development
 - Balloon Vehicle Technology Development Research Project
 - » Super Pressure Design
 - » Materials Development
 - » Flight Tests

2.2 Flight Trajectory Control Systems

- Requirements [drivers]
 - Altitude Control [Mission, Science]
 - Latitude Drift Control [Mission, Science]
- Target Design-to Requirements
 - Control Diurnal Altitude Variation to <= 10,000' (3 km)</p>
 - Control Latitude Drift Variation to <=+/- 20 deg over mission</p>
- Leading Design Concepts
 - Altitude
 - » Anchor Balloon
 - » Gas Temperature or Pressure Control
 - Ground Track
 - » Tethered Drag Body
 - » Propulsion

Altitude Control - Science Requirements

Latitude Control - Science Requirements

2.2 Flight Trajectory Control Systems

Technology Development

- Multiple Altitude Control Systems
- Multiple Ground Track Control Systems

2.3 Recovery System

- Requirements [drvs] Note: No Science Req'mts
 - Safely Return Gondola to Surface [Mission]
 - Safely Return Balloon Envelope to Surface [Mission]
- Target Design-to Requirements
 - Minimize Payload Damage
 - Provide Water/Land Recovery
- Leading Design Concepts
 - Use Current Capability with Terminate Planning
 - Autonomous Steerable Packed Parafoils
 - Inflatables for Impact Shock and Water Recovery
- Technology Development
 - Autonomous Steerables Applied to Balloon Mission

2.4 Flight Train

- Requirements [drivers]
 - Support Gondola Load, Provide Balloon/Gondola Separation [Mission]
 - Torque Transfer Mechanism [Science, Mission]
- Target Design-to Requirements
 - Gondola Load to 3500 lbs (1600 kg)
 - Torsional Stiffness TBD
 - Reduce Terminate Shock Load to <= 3g's</p>
- Leading Design Concept
 - 'Standard' Flight Train with
 - » New Materials
 - » Proven In-line Energy Absorbtion Techniques